A tyrosine-based motif in the HIV-1 envelope glycoprotein tail mediates cell-type- and Rab11-FIP1C-dependent incorporation into virions.

Products Related to ZikaWestNileDengueMalariaT.BChikungunya, HIV, SARS

Product# 1039 HIV-1 YU2 (M Tropic)Envelope Glycoprotein gp41

Product# 1081 HIV-1 gp120 (ADA)

Product# 1011 HIV-1 gp120 (subtype C)

Product# 1031 HIV-1 gp120 (YU2)

SIGNIFICANCE

The mechanism of incorporation of the HIV envelope glycoprotein (Env) into a developing particle is not well understood. We used a previously identified cellular trafficking factor, Rab11-FIP1C, as a probe to identify a key motif in the Env cytoplasmic tail that is essential for Env incorporation into particles. We show that this motif governs the cell-type–specific incorporation of Env into particles and the appearance of Env at the particle budding site. Our results provide key insights into how HIV Env is incorporated into budding particles and support an important role for FIP1C in this process.

Keywords: HIV assembly, HIV envelope, pseudotyping, FIP1C, Rab coupling protein

ABSTRACT

Lentiviruses such as HIV-1 encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs) that include motifs mediating interactions with host-cell–trafficking factors. We demonstrated recently that Rab11-family interacting protein 1C (FIP1C) is required for CT-dependent incorporation of Env into HIV-1 particles. Here, we used viruses bearing targeted substitutions within CT to map the FIP1C-dependent incorporation of Env. We identified YW795 as a critical motif mediating cell-type–dependent Env incorporation. Disruption of YW795 reproduced the cell-type–dependent particle incorporation of Env that had previously been observed with large truncations of CT. A revertant virus bearing a single amino acid change near the C terminus of CT restored wild-type levels of Env incorporation, Gag–Env colocalization on the plasma membrane, and viral replication. These findings highlight the importance of YW795 in the cell-type–dependent incorporation of Env and support a model of HIV assembly in which FIP1C/RCP mediates Env trafficking to the particle assembly site.

Lentiviruses such as HIV-1 encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs) that include motifs mediating interactions with host-cell–trafficking factors. We demonstrated recently that Rab11-family interacting protein 1C (FIP1C) is required for CT-dependent incorporation of Env into HIV-1 particles. Here, we used viruses bearing targeted substitutions within CT to map the FIP1C-dependent incorporation of Env. We identified YW795 as a critical motif mediating cell-type–dependent Env incorporation. Disruption of YW795 reproduced the cell-type–dependent particle incorporation of Env that had previously been observed with large truncations of CT. A revertant virus bearing a single amino acid change near the C terminus of CT restored wild-type levels of Env incorporation, Gag–Env colocalization on the plasma membrane, and viral replication. These findings highlight the importance of YW795 in the cell-type–dependent incorporation of Env and support a model of HIV assembly in which FIP1C/RCP mediates Env trafficking to the particle assembly site.

Lentiviruses such as HIV encode envelope glycoproteins (Envs) with long cytoplasmic tails (CTs) of 150 amino acids or more, whereas avian and murine retroviruses generally encode CTs of 20–30 residues. The reasons for this difference are not entirely clear, but may be attributable to interactions with host-trafficking pathways that define the specificity of Env incorporation into viral particles. A large number of tyrosine- and dileucine-based motifs are present in the HIV-1 Env CT, some of which have been shown to interact with factors involved in vesicular trafficking. The membrane-proximal Yxxϕ motif (Y712) has been well studied and serves as a docking site for the μ-subunit of the clathrin adaptor AP-2 (1, 2). Disruption of this motif enhances cell-surface Env concentration, yet somewhat paradoxically reduces Env incorporation into particles and particle infectivity (3–6). Disruption of YW802 has also been shown to reduce Env incorporation and infectivity (5, 7). The C-terminal dileucine LL855 motif interacts with the AP-1 (8) or AP-2 (9) clathrin adaptor proteins and plays a role in endocytosis and in determining the cell-surface levels of Env. We recently performed a systematic mutagenesis of tyrosine- and dileucine-based motifs in the Env CT that confirmed the importance of Y712 on cell-surface levels of Env (3). This study also illuminated an important region of the CT-spanning residues 795–803, in which disruption of YW or LL motifs had dramatic effects on viral replication.

In an important advance to our understanding of the role of the Env CT, Murakami and Freed demonstrated that the incorporation of Env into viral particles was cell-type–dependent and that this incorporation in most T-cell lines and macrophages requires an intact long cytoplasmic tail (10). They demonstrated that Env incorporation in 293T cells did not require the long CT, nor was the CT absolutely required for incorporation in particles produced from HeLa or MT-4 cells. However, Env incorporation into particles produced from other T-cell lines and macrophages was severely impaired by CT truncation, and productive replication of virus bearing an Env with a truncated tail was possible only in MT-4 cells. This study strongly implicated host factors in the CT-dependent incorporation of Env.

We recently reported that Rab11-FIP1C (FIP1C) (also known as Rab coupling protein or RCP) and Rab14 are required for Env incorporation and that the effect of FIP1C was dependent upon the Env CT (11). This suggested to us that the cell-type–dependent findings reported by Murakami and Freed (10) may be related to FIP1C-mediated transport of Env mediated through motifs on the Env CT. To test this hypothesis, we examined a panel of viruses bearing mutations of tyrosine- and dileucine-based motifs for their ability to redistribute FIP1C to the plasma membrane. We identified YW795 as a critical motif that is required for CT-dependent FIP1C redistribution out of the endosomal recycling compartment. Remarkably, the disruption of YW795 completely recreated the pattern of cell-type dependence on Env incorporation previously observed with CT truncation, and FIP1C depletion had no effect on the level of incorporation of this mutant Env. A downstream second-site revertant was derived that restored Env incorporation and dependence on FIP1C for particle incorporation, suggesting that YW795 and FIP1C mediate Env incorporation in a cell-type–specific manner.

RESULTS

 

YW795 Motif in the gp41 CT Is Required for HIV-1 Env-Mediated Redistribution of FIP1C and for Env Incorporation into Virions.

We recently demonstrated that FIP1C is required for HIV-1 Env incorporation in a gp41 CT-dependent manner (11). We noted in that study that the subcellular distribution of GFP–FIP1C was substantially altered upon expression of wild-type Env, whereas expression of a tail-truncated Env (CT144) failed to redistribute GFP-FIP1C from a predominant perinuclear location in HeLa cells. We hypothesized that this redistribution assay could be used to map important motifs in the CT that are involved in FIP1C-dependent trafficking of Env. We used a previously characterized panel of Env constructs bearing mutations in tyrosine- and dileucine-based motifs for this analysis (3) (Fig. S1) and collected images of GFP–FIP1C subcellular distribution that were categorized as predominantly “redistributed” or “perinuclear” as shown for wild-type Env and CT144 Env, respectively, in Fig. 1A. Images obtained from 100 cells were characterized by three independent investigators in a blinded fashion to generate the data in Fig. 1B. To be clear, we were not scoring colocalization of Env and FIP1C in this semiquantitative assay, but rather the ability of Env to induce subcellular redistribution of FIP1C out of the perinuclear endosomal recycling compartment. We found that most of the tyrosine and dileucine mutants redistributed FIP1C out of the perinuclear location in a manner similar to that of wild-type Env (Fig. 1B). One mutant, however, was noted to affect FIP1C redistribution only minimally, similar to the phenotype observed with CT144. This was mutant S5 in Fig. 1, a YW795/SL substitution within a nine-amino-acid stretch (Y795WWNLLQYW802) of alpha helix 2 of the gp41 CT previously found to be important for Env incorporation and for viral replication in T-cell lines (3, 7). Next, we tested nine individual mutants of tyrosine- and dileucine-based motif mutants for incorporation of Env into HIV-1 particles in the H9 T-cell line. Notably, S5 (YW795/SL) demonstrated a significant defect in Env incorporation (Fig. 1C), whereas no significant defect was observed following disruption of the other eight motifs. We conclude that disruption of the YW795 motif prevents redistribution of GFP–FIP1C and greatly diminishes Env incorporation, suggesting that it may play a role in FIP1C-mediated Env incorporation into particles.

Fig. S1.

Panel of Env CT mutants used in this study (3). WT sequence and numbering from NL4-3 is shown at top. Amino acids targeted for mutagenesis are represented by AA designation on WT line, and each mutant construct below WT shows altered residues.

 

YW/SL795 Virus Replicates Poorly in T-Cell Lines.

Murakami and Freed have shown that truncation of the HIV-1 Env CT blocks viral replication in CEM, Jurkat, and MT-2 T-cell lines, as well as in phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cell (PBMCs) and in monocyte-derived macrophages (MDMs) (10). We hypothesized that S5 may recapitulate these results in the absence of tail truncation. We therefore infected H9 T cells with vesicular stomatitis virus glycoprotein (VSV-G)–pseudotyped NL4-3, CT144, S1, S2, or S5 viruses (sequences depicted in Fig. S1 and Fig. 2D) at a multiplicity of infection (MOI) of 0.1 and monitored p24 production in the supernatants over a 3-wk period. As shown in Fig. 2A, S5 and CT144 replicated very poorly in H9 cells, whereas NL4-3, S1, and S2 viruses demonstrated a similar pattern of viral spread, with peak production of p24 around day 18. A very similar pattern of replication was seen for this panel of viruses when introduced into CEM T cells (Fig. S2). This suggested to us that the YW795 motif is required for efficient cell-to-cell spread in nonpermissive cells, similar to that previously documented for CT144.

Growth curve of S5 mutant in H9 cell culture and revertant analysis. (A) H9 cells were infected with WT, CT144, and three selected Env CT mutants from the CT panel. A total of 50,000 H9 cells were infected with VSV-G–pseudotyped virus at MOI 0.1. Culture supernatants were collected for each virus every 3 d for p24 quantitation. Note that CT144 and S5 virus production is not detected on this scale. (B) S5 was cultured for an extended time; note break in x axis timescale. (C) Revertant S5R virus and comparator viruses were introduced into H9 cells for growth curve generation as in A. (D) Diagram depicting relevant WT and mutant CT sequences including S5 and S5R changes.

Fig. 2.

Growth curve of S5 mutant in CEM culture. CEM cells were infected with WT, CT144, and three selected Env CT mutants from the CT panel as described in the legend to Fig. 2. P24 antigen released into supernatants is shown on the y axis.

 

S5 Revertant Incorporates Wild-Type Levels of Env and Replicates Well in H9 Cells.

Despite the apparent lack of replication shown in Fig. 2A, low levels of p24 could be detected in H9 culture supernatants, suggesting that there was ongoing replication at a very reduced level. We continually passed the S5-inoculated H9 T cells until we observed a significant rise in p24 output at 80–83 d postinfection (Fig. 2B). Sequencing of this suspected revertant virus revealed conservation of the YW795/SL substitution and a single L850S second-site mutation (depicted in Fig. 2D). Sequencing of the matrix (MA) region of the revertant revealed no changes in this region (wild-type NL4-3 MA sequence). We then reintroduced the L850S in combination with the YW795/SL change into the wild-type NL4-3 background to ensure that this was the relevant change and compared growth of the revertant (termed “S5R”) to that of the S5 virus. As shown in Fig. 2C, S5R replicated well in H9 cells with a growth cure almost identical to that of wild type. This confirmed that the L850S change is a second-site reversion regulating HIV-1 spread in H9 T cells.

 

S5 Recreates the Cell-Type–Specific Restriction of CT144 Env Incorporation, Whereas S5R Restores Env Incorporation in All Cell Types.

We suspected from the results above that the L850S change in the Env CT had restored efficient Env incorporation in H9 T cells. We next asked whether S5 could completely recapitulate the permissive (293T), semipermissive (HeLa, MT-4), and nonpermissive (H9, CEM, Jurkat, MDM) phenotype with regard to Env incorporation that had been previously established for CT144 (10) and if S5R consistently reversed this restriction of Env incorporation. To test this idea, each cell type was infected with VSV-G–pseudotyped wild-type NL4-3, CT144, S5, or S5R viruses, and Env incorporation into released viral particles was evaluated by Western blot analysis. As shown in Fig. 3A, Env incorporation for each of the four viruses was equal in permissive 293T cells. Both CT144 and S5 Env levels were reduced compared with wild-type NL4-3 in semipermissive HeLa and MT-4 cells, whereas S5R restored Env incorporation to wild-type levels (Fig. 3 B and C). Remarkably, infection of nonpermissive cell lines and MDMs demonstrated that S5 Env incorporation was restricted similarly to that of CT144 (Fig. 3 DG). In each case, S5R restored particle Env incorporation to wild-type levels. These results indicated to us that the YW795/SL substitution in the CT completely reproduced the cell-type–specific pattern of Env incorporation seen with a drastic truncation of the CT, whereas the L850S second-site revertant restored wild-type Env incorporation in all cell types tested.

An external file that holds a picture, illustration, etc.
Object name is pnas.1504174112fig03.jpg

Fig. 3.

Cell-type–dependent incorporation of WT and CT mutant HIV envelope glycoprotein. A panel of permissive (A) (293T), semipermissive (B and C) (HeLa, MT-4), and restrictive (DG) (H9, CEM, Jurkat, MDM) cells for envelope incorporation was used to characterize S5 and S5R viral Env incorporation into particles. VSV-G–pseudotyped viruses were used to infect each indicated cell type at an MOI of 1.0. Cell and virus-associated proteins were analyzed 2 d postinfection for all cell types except for MDMs, where cells and viruses were harvested following 8 d of infection. “gp41*” indicates the faster-migrating form of gp41 in the CT144 particle lanes.

 

S5R Restores FIP1C-Dependent Env Incorporation and Particle Incorporation.

To further evaluate the significance of the levels of Env incorporation exhibited by S5 and S5R viruses in restrictive cells, we measured particle infectivity from supernatants of infected H9 cells. Particles released from CT144- and S5-infected cells were significantly less infectious than wild type, whereas S5R-infected cells released particles that were somewhat more infectious than wild type (Fig. 4A). We previously established that wild-type Env incorporation is dependent upon FIP1C and that FIP1C-dependent Env incorporation requires the intact CT (11). We therefore next asked if the CT revertant mutation in S5R restored FIP1C-dependent Env incorporation. Depletion of FIP1C greatly diminished wild-type Env incorporation in H9 cells as had been previously shown (Fig. 4B). Remarkably, although we could see no effect of FIP1C depletion on the low level of Env incorporation of S5 virus, S5R regained sensitivity to FIP1C depletion (Fig. 4B). In other words, the restoration of cell-type–dependent Env incorporation seen with S5R restored particle infectivity, and the restoration of Env particle incorporation correlated with a dependence on the cellular trafficking factor FIP1C.

 

S5R Restores Env–Gag Colocalization at the Plasma Membrane.

The poor incorporation of S5 Env into virions could be a result of a general disruption of trafficking to the plasma membrane or a disruption of trafficking to specific sites of particle budding. To begin to address this, we infected HeLa cells with VSV-G–pseudotyped viruses at MOI 1.0 and used total internal reflection fluorescence (TIRF) microscopy to analyze Gag and Env distribution on plasma membrane. Both Gag and Env were present in a punctate distribution on the cell surface (Fig. 5). However, the colocalization of Env with Gag puncta was markedly different when comparing wild type with CT144 Env. We noted that Gag particle puncta largely colocalized with Env staining for wild-type virus, whereas colocalization was much diminished with CT144 Env. Using a thresholded Pearson’s coefficient algorithm to quantify colocalization (12), we found a correlation value of 0.52 (±0.09) of Env to Gag for wild-type virus, whereas CT144 colocalization with Gag puncta was reduced to 0.14 (±0.07) (Fig. 5 A and B) (P < 0.01). S5 Env/Gag colocalization was also significantly below that seen for WT at 0.24 (±0.06) (Fig. 5 A and B) (P < 0.01). Notably, S5R Env restored the observed wild-type level of colocalization with Gag puncta (0.53 ± 0.06). The roughly threefold difference in colocalization between WT and CT144 or S5 Env with Gag is consistent with the level of Env incorporation seen from immunoblotting (Fig. 3). To further examine the surface distribution of Gag and Env, we performed superresolution microscopy at the level of cell attachment to the coverslip. Results were similar to those seen by TIRF, with marked colocalization of Gag and Env for wild-type and S5R virus and much reduced colocalization for CT144 and S5 (Fig. 5A, rightmost overlay panels).


Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences
Hiv-1

Leave a comment

All comments are moderated before being published